login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325596
a(n) = Sum_{d|n} mu(n/d) * (-1)^(d + 1) * d.
4
1, -3, 2, -2, 4, -6, 6, -4, 6, -12, 10, -4, 12, -18, 8, -8, 16, -18, 18, -8, 12, -30, 22, -8, 20, -36, 18, -12, 28, -24, 30, -16, 20, -48, 24, -12, 36, -54, 24, -16, 40, -36, 42, -20, 24, -66, 46, -16, 42, -60, 32, -24, 52, -54, 40, -24, 36, -84, 58, -16, 60, -90, 36, -32, 48
OFFSET
1,2
COMMENTS
Moebius transform of A181983.
LINKS
FORMULA
G.f.: Sum_{k>=1} mu(k) * x^k / (1 + x^k)^2.
G.f. A(x) satisfies: A(x) = x / (1 + x)^2 - Sum_{k>=2} A(x^k).
a(n) = phi(n) if n odd, phi(n) - 4*phi(n/2) if n even, where phi = A000010.
a(n) = A319997(n) - A319998(n).
Multiplicative with a(2) = -3, a(2^e) = -2^(e-1) for e > 1, and a(p^e) = (p-1)*p^(e-1) for p > 2. - Amiram Eldar, Nov 15 2022
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - 4 EulerPhi[n/2]]; Table[a[n], {n, 1, 65}]
nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
f[p_, e_] := (p - 1)*p^(e - 1); f[2, 1] = -3; f[2, e_] := -2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*(-1)^(d+1)*d); \\ Michel Marcus, Sep 07 2019
(Magma) [&+[MoebiusMu(Floor(n/d))*(-1)^(d+1)*d:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Sep 07 2019
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Sep 07 2019
STATUS
approved