OFFSET
1,2
COMMENTS
Moebius transform of A181983.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{k>=1} mu(k) * x^k / (1 + x^k)^2.
G.f. A(x) satisfies: A(x) = x / (1 + x)^2 - Sum_{k>=2} A(x^k).
a(n) = phi(n) if n odd, phi(n) - 4*phi(n/2) if n even, where phi = A000010.
Multiplicative with a(2) = -3, a(2^e) = -2^(e-1) for e > 1, and a(p^e) = (p-1)*p^(e-1) for p > 2. - Amiram Eldar, Nov 15 2022
MATHEMATICA
a[n_] := Sum[MoebiusMu[n/d] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - 4 EulerPhi[n/2]]; Table[a[n], {n, 1, 65}]
nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
f[p_, e_] := (p - 1)*p^(e - 1); f[2, 1] = -3; f[2, e_] := -2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*(-1)^(d+1)*d); \\ Michel Marcus, Sep 07 2019
(Magma) [&+[MoebiusMu(Floor(n/d))*(-1)^(d+1)*d:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Sep 07 2019
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Sep 07 2019
STATUS
approved