login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325596 a(n) = Sum_{d|n} mu(n/d) * (-1)^(d + 1) * d. 3
1, -3, 2, -2, 4, -6, 6, -4, 6, -12, 10, -4, 12, -18, 8, -8, 16, -18, 18, -8, 12, -30, 22, -8, 20, -36, 18, -12, 28, -24, 30, -16, 20, -48, 24, -12, 36, -54, 24, -16, 40, -36, 42, -20, 24, -66, 46, -16, 42, -60, 32, -24, 52, -54, 40, -24, 36, -84, 58, -16, 60, -90, 36, -32, 48 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Moebius transform of A181983.

LINKS

Table of n, a(n) for n=1..65.

FORMULA

G.f.: Sum_{k>=1} mu(k) * x^k / (1 + x^k)^2.

G.f. A(x) satisfies: A(x) = x / (1 + x)^2 - Sum_{k>=2} A(x^k).

a(n) = phi(n) if n odd, phi(n) - 4*phi(n/2) if n even, where phi = A000010.

a(n) = A319997(n) - A319998(n).

MATHEMATICA

a[n_] := Sum[MoebiusMu[n/d] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]

a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - 4 EulerPhi[n/2]]; Table[a[n], {n, 1, 65}]

nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest

PROG

(PARI) a(n) = sumdiv(n, d, moebius(n/d)*(-1)^(d+1)*d); \\ Michel Marcus, Sep 07 2019

(MAGMA) [&+[MoebiusMu(Floor(n/d))*(-1)^(d+1)*d:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Sep 07 2019

CROSSREFS

Cf. A000010, A002129, A008683, A037225, A181983, A319997, A319998.

Sequence in context: A298904 A308194 A245572 * A254876 A249159 A230871

Adjacent sequences:  A325593 A325594 A325595 * A325597 A325598 A325599

KEYWORD

sign,mult

AUTHOR

Ilya Gutkovskiy, Sep 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 07:00 EDT 2021. Contains 345018 sequences. (Running on oeis4.)