Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 16 2022 06:56:00
%S 1,-3,2,-2,4,-6,6,-4,6,-12,10,-4,12,-18,8,-8,16,-18,18,-8,12,-30,22,
%T -8,20,-36,18,-12,28,-24,30,-16,20,-48,24,-12,36,-54,24,-16,40,-36,42,
%U -20,24,-66,46,-16,42,-60,32,-24,52,-54,40,-24,36,-84,58,-16,60,-90,36,-32,48
%N a(n) = Sum_{d|n} mu(n/d) * (-1)^(d + 1) * d.
%C Moebius transform of A181983.
%H Amiram Eldar, <a href="/A325596/b325596.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=1} mu(k) * x^k / (1 + x^k)^2.
%F G.f. A(x) satisfies: A(x) = x / (1 + x)^2 - Sum_{k>=2} A(x^k).
%F a(n) = phi(n) if n odd, phi(n) - 4*phi(n/2) if n even, where phi = A000010.
%F a(n) = A319997(n) - A319998(n).
%F Multiplicative with a(2) = -3, a(2^e) = -2^(e-1) for e > 1, and a(p^e) = (p-1)*p^(e-1) for p > 2. - _Amiram Eldar_, Nov 15 2022
%t a[n_] := Sum[MoebiusMu[n/d] (-1)^(d + 1) d, {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
%t a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - 4 EulerPhi[n/2]]; Table[a[n], {n, 1, 65}]
%t nmax = 65; CoefficientList[Series[Sum[MoebiusMu[k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t f[p_, e_] := (p - 1)*p^(e - 1); f[2, 1] = -3; f[2, e_] := -2^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 15 2022 *)
%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*(-1)^(d+1)*d); \\ _Michel Marcus_, Sep 07 2019
%o (Magma) [&+[MoebiusMu(Floor(n/d))*(-1)^(d+1)*d:d in Divisors(n)]:n in [1..70]]; // _Marius A. Burtea_, Sep 07 2019
%Y Cf. A000010, A002129, A008683, A037225, A181983, A319997, A319998.
%K sign,mult
%O 1,2
%A _Ilya Gutkovskiy_, Sep 07 2019