OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of non-constant, non-relatively prime partitions. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The sequence of terms together with their prime indices begins:
21: {2,4} 183: {2,18} 305: {3,18}
39: {2,6} 185: {3,12} 319: {5,10}
57: {2,8} 189: {2,2,2,4} 321: {2,28}
63: {2,2,4} 203: {4,10} 325: {3,3,6}
65: {3,6} 213: {2,20} 333: {2,2,12}
87: {2,10} 235: {3,15} 339: {2,30}
91: {4,6} 237: {2,22} 351: {2,2,2,6}
111: {2,12} 247: {6,8} 365: {3,21}
115: {3,9} 259: {4,12} 371: {4,16}
117: {2,2,6} 261: {2,2,10} 377: {6,10}
129: {2,14} 267: {2,24} 387: {2,2,14}
133: {4,8} 273: {2,4,6} 393: {2,32}
147: {2,4,4} 299: {6,9} 399: {2,4,8}
159: {2,16} 301: {4,14} 417: {2,34}
171: {2,2,8} 303: {2,26} 427: {4,18}
MATHEMATICA
Select[Range[100], !(#==1||PrimePowerQ[#]||GCD@@PrimePi/@First/@FactorInteger[#]==1)&]
CROSSREFS
A327685 allows nonprime prime powers.
A338330 is the coprime instead of relatively prime version.
A338554 counts the partitions with these Heinz numbers.
A338555 is the complement.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A302696 gives the Heinz numbers of pairwise coprime partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 03 2020
STATUS
approved