login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108572
Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.
4
0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 0, 37, 0, 44, 16, 56, 0, 93, 6, 101, 29, 137, 0, 217, 0, 230, 57, 297, 20, 450, 0, 490, 102, 643, 0, 918, 0, 1004, 202, 1255, 0, 1783, 14, 1992, 298, 2438, 0, 3364, 61, 3734, 491, 4565, 0, 6251, 0, 6842, 818
OFFSET
1,6
COMMENTS
The singleton and the all-ones partitions are ignored, so that a(n)=0 if n is prime. If a partition is listed as m_1^am_2^bm_3^c..., then it is counted exactly when gcd(a,b,c,...)>1. These are equinumerous (conjugate) with those partitions for which gcd(m_1,m_2,...)>1 (less 1, the singleton), hence the formula.
FORMULA
a(n) = A018783(n)-1, n>1. - Vladeta Jovovic, Jul 28 2005
EXAMPLE
a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}.
Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion.
MAPLE
with(combinat):PartMulti:=proc(n::nonnegint) local count, a, i, j, b, m, k, part_vec;
bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps);
for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n);
for k from 1 to n do part_vec[k]:=0 od;
for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od;
g:=0; for j from 1 to n do g:=igcd(g, part_vec[j]) od;
if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc;
seq(PartMulti(q), q=1..49);
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And[Length[#]<n, GCD@@Length/@Split[#]>1]&]], {n, 20}] (* Gus Wiseman, Dec 06 2018 *)
KEYWORD
nonn
AUTHOR
Len Smiley, Jul 25 2005
EXTENSIONS
More terms from Gus Wiseman, Dec 06 2018
STATUS
approved