login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.
4

%I #9 Dec 07 2018 07:54:43

%S 0,0,0,1,0,3,0,4,2,7,0,13,0,15,8,21,0,37,0,44,16,56,0,93,6,101,29,137,

%T 0,217,0,230,57,297,20,450,0,490,102,643,0,918,0,1004,202,1255,0,1783,

%U 14,1992,298,2438,0,3364,61,3734,491,4565,0,6251,0,6842,818

%N Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.

%C The singleton and the all-ones partitions are ignored, so that a(n)=0 if n is prime. If a partition is listed as m_1^am_2^bm_3^c..., then it is counted exactly when gcd(a,b,c,...)>1. These are equinumerous (conjugate) with those partitions for which gcd(m_1,m_2,...)>1 (less 1, the singleton), hence the formula.

%F a(n) = A018783(n)-1, n>1. - _Vladeta Jovovic_, Jul 28 2005

%e a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}.

%e Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion.

%p with(combinat):PartMulti:=proc(n::nonnegint) local count,a,i,j,b,m,k,part_vec;

%p bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps);

%p for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n);

%p for k from 1 to n do part_vec[k]:=0 od;

%p for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od;

%p g:=0; for j from 1 to n do g:=igcd(g,part_vec[j]) od;

%p if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc;

%p seq(PartMulti(q),q=1..49);

%t Table[Length[Select[IntegerPartitions[n],And[Length[#]<n,GCD@@Length/@Split[#]>1]&]],{n,20}] (* _Gus Wiseman_, Dec 06 2018 *)

%Y Cf. A000837, A018783, A047966, A100953, A303386, A303547, A303553, A319149, A319162, A319164, A319810.

%K nonn

%O 1,6

%A _Len Smiley_, Jul 25 2005

%E More terms from _Gus Wiseman_, Dec 06 2018