The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108571 Any digit d in the sequence says: "I am part of an integer in which you'll find d digits d". 11
 1, 22, 122, 212, 221, 333, 1333, 3133, 3313, 3331, 4444, 14444, 22333, 23233, 23323, 23332, 32233, 32323, 32332, 33223, 33232, 33322, 41444, 44144, 44414, 44441, 55555, 122333, 123233, 123323, 123332, 132233, 132323, 132332, 133223, 133232, 133322, 155555 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The sequence is finite. Last term: 999999999888888887777777666666555554444333221. Number of terms is 66712890763701234740813164553708284. - Zak Seidov, Jan 02 2007 Fixed points of A139337. - Reinhard Zumkeller, Apr 14 2008 Sequence contains squares (A181392) and cubes (A225886) but no higher powers, see Comments in A181392. - Giovanni Resta, May 19 2013 LINKS T. D. Noe, Table of n, a(n) for n=1..21056 (terms < 10^10) EXAMPLE 23323 is in the sequence because it has two 2's and three 3's. 23332 is in the sequence because it has two 2's and three 3's. 23333 is not in the sequence because it has only one 2 and four 3's. PROG (PARI) is(n)={ vecmin(n=vecsort(digits(n))) && #n==normlp(Set(n), 1) && !for(i=1, #n, n[i+n[i]-1]==n[i] || return; i+n[i]>#n || n[i+n[i]]>n[i] || return; n[i]>1 && i+=n[i]-1)} \\ M. F. Hasler, Sep 22 2014 (Python) def ok(n): s = str(n); return all(s.count(d) == int(d) for d in set(s)) def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(155555)) # Michael S. Branicky, Jan 22 2021 CROSSREFS Cf. A127007, A139337, A181392, A225886. Sequence in context: A156293 A225308 A043498 * A247700 A105776 A044354 Adjacent sequences:  A108568 A108569 A108570 * A108572 A108573 A108574 KEYWORD base,easy,fini,nonn AUTHOR Eric Angelini, Jul 05 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 20:49 EST 2021. Contains 349395 sequences. (Running on oeis4.)