login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037698 Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3,0. 2
1, 9, 66, 462, 3235, 22647, 158532, 1109724, 7768069, 54376485, 380635398, 2664447786, 18651134503, 130557941523, 913905590664, 6397339134648, 44781373942537, 313469617597761, 2194287323184330 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Index entries for linear recurrences with constant coefficients, signature (7,0,0,1,-7).

FORMULA

a(n) = 7*a(n-1) + a(n-4) - 7*a(n-5).

G.f. x*(1+2*x+3*x^2) / ( (x-1)*(7*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Dec 19 2011

a(n) = (11*7^(n+1)+(7-(-1)^n)*(25+8*i^(n(n+1)))-275)/400 where i=sqrt(-1). - Bruno Berselli, Dec 19 2011

MATHEMATICA

With[{c=PadLeft[{}, 24, {1, 2, 3, 0}]}, Table[FromDigits[Take[c, n], 7], {n, 20}]] (* or *) LinearRecurrence[{7, 0, 0, 1, -7}, {1, 9, 66, 462, 3235}, 20] (* Harvey P. Dale, Oct 02 2011 *)

PROG

(Maxima) makelist((11*7^(n+1)+(7-(-1)^n)*(25+8*%i^(n*(n+1)))-275)/400, n, 1, 19); [Bruno Berselli, Dec 19 2011

CROSSREFS

Sequence in context: A081902 A002695 A003408 * A037607 A055148 A014830

Adjacent sequences:  A037695 A037696 A037697 * A037699 A037700 A037701

KEYWORD

nonn,base,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 01:57 EST 2019. Contains 329948 sequences. (Running on oeis4.)