login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091068 a(0) = 0; for n>0, a(n) = a(n-1) - n if that is >= 0, else a(n) = a(n-1) + n - 1. 3
0, 0, 1, 3, 6, 1, 6, 12, 4, 12, 2, 12, 0, 12, 25, 10, 25, 8, 25, 6, 25, 4, 25, 2, 25, 0, 25, 51, 23, 51, 21, 51, 19, 51, 17, 51, 15, 51, 13, 51, 11, 51, 9, 51, 7, 51, 5, 51, 3, 51, 1, 51, 102, 49, 102, 47, 102, 45, 102, 43, 102, 41, 102, 39, 102, 37, 102, 35, 102, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

A sequence equivalent to A091023. Let b(k) = A091023(k) for all k. Suppose we have just assigned b(x) = n. Then a(n-1) is the number of b(k) for 1 <= k < x that are not yet assigned.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..10000

FORMULA

This is a concatenation of blocks: b(-2) = [0], b(-1) = [0], b(0) = [1], b(1) = [3], b(2) = [6 1 6], b(3) = [12 4 12 2 12 0 12], b(4) = [25 10 25 8 25 6 25 4 25 2 25 0 25], ...

Let M(k) be the k-th term of A077854. Then block b(k) for k >= 2 is [M(k), x, M(k), x-2, M(k), x-4, M(k), ..., M(k), 0 or 1, M(k)] where x = M(k-1) - 2. The length of the block is M(k+1) - 2 M(k) + M(k-1) (the second difference of A077854, shifted one place).

EXAMPLE

a(4) = 6, 6-5 = 1 >= 0, so a(5) = 1. 1-6 < 0, so a(6) = 1 + 5 = 6.

When in A091023 we assign b(8) = 11, there are 2 unassigned b's to the left, namely b(3) and b(6) and indeed a(10) = 2.

MATHEMATICA

t={0}; Do[AppendTo[t, If[t[[-1]]-n>=0, t[[-1]]-n, t[[-1]]+n-1]], {n, 1, 69}]; t (* Indranil Ghosh, Feb 22 2017 *)

PROG

(Python)

print "0 0"

i=1

a=0

if a-i>=0:b=a-i

else:b=a+i-1

while i<=10000:

....print str(i)+" "+str(b)

....a=b

....i+=1

....if a-i>=0:b=a-i

....else:b=a+i-1 # Indranil Ghosh, Feb 22 2017

CROSSREFS

Cf. A091023, A008344.

Sequence in context: A145389 A055263 A004157 * A065233 A243658 A072452

Adjacent sequences:  A091065 A091066 A091067 * A091069 A091070 A091071

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 23 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 06:41 EDT 2019. Contains 323386 sequences. (Running on oeis4.)