

A091068


a(0) = 0; for n>0, a(n) = a(n1)  n if that is >= 0, else a(n) = a(n1) + n  1.


3



0, 0, 1, 3, 6, 1, 6, 12, 4, 12, 2, 12, 0, 12, 25, 10, 25, 8, 25, 6, 25, 4, 25, 2, 25, 0, 25, 51, 23, 51, 21, 51, 19, 51, 17, 51, 15, 51, 13, 51, 11, 51, 9, 51, 7, 51, 5, 51, 3, 51, 1, 51, 102, 49, 102, 47, 102, 45, 102, 43, 102, 41, 102, 39, 102, 37, 102, 35, 102, 33
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,4


COMMENTS

A sequence equivalent to A091023. Let b(k) = A091023(k) for all k. Suppose we have just assigned b(x) = n. Then a(n1) is the number of b(k) for 1 <= k < x that are not yet assigned.


LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..10000


FORMULA

This is a concatenation of blocks: b(2) = [0], b(1) = [0], b(0) = [1], b(1) = [3], b(2) = [6 1 6], b(3) = [12 4 12 2 12 0 12], b(4) = [25 10 25 8 25 6 25 4 25 2 25 0 25], ...
Let M(k) be the kth term of A077854. Then block b(k) for k >= 2 is [M(k), x, M(k), x2, M(k), x4, M(k), ..., M(k), 0 or 1, M(k)] where x = M(k1)  2. The length of the block is M(k+1)  2 M(k) + M(k1) (the second difference of A077854, shifted one place).


EXAMPLE

a(4) = 6, 65 = 1 >= 0, so a(5) = 1. 16 < 0, so a(6) = 1 + 5 = 6.
When in A091023 we assign b(8) = 11, there are 2 unassigned b's to the left, namely b(3) and b(6) and indeed a(10) = 2.


MATHEMATICA

t={0}; Do[AppendTo[t, If[t[[1]]n>=0, t[[1]]n, t[[1]]+n1]], {n, 1, 69}]; t (* Indranil Ghosh, Feb 22 2017 *)


PROG

(Python)
print "0 0"
i=1
a=0
if ai>=0:b=ai
else:b=a+i1
while i<=10000:
....print str(i)+" "+str(b)
....a=b
....i+=1
....if ai>=0:b=ai
....else:b=a+i1 # Indranil Ghosh, Feb 22 2017


CROSSREFS

Cf. A091023, A008344.
Sequence in context: A145389 A055263 A004157 * A065233 A243658 A072452
Adjacent sequences: A091065 A091066 A091067 * A091069 A091070 A091071


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Feb 23 2004


STATUS

approved



