Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:46:25
%S 1,15,174,1850,18855,187425,1832460,17705700,169569405,1612842275,
%T 15256106778,143660483070,1347716324227,12603114069525,
%U 117536416879320,1093553079352200,10153324144411065,94098595671581175,870667876141568070,8044341506669534850
%N Expansion of 1/(1 - 10*x + 9*x^2)^(3/2).
%H Seiichi Manyama, <a href="/A331516/b331516.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = 1/2 * Sum_{k=1..n+1} 3^(n+1-k) * k * binomial(n+1,k) * binomial(n+1+k,k).
%F n * a(n) = 5 * (2*n+1) * a(n-1) - 9 * (n+1) * a(n-2) for n>1.
%F a(n) = ((n+2)/2) * Sum_{k=0..n} 4^k * binomial(n+1,k) * binomial(n+1,k+1).
%F a(n) ~ sqrt(n) * 3^(2*n + 3) / (2^(7/2) * sqrt(Pi)). - _Vaclav Kotesovec_, Jan 26 2020
%t a[n_] := 1/2 * Sum[3^( n + 1 - k) * k * Binomial[n + 1, k] * Binomial[n + 1 + k, k], {k, 1, n+1}]; Array[a, 20, 0] (* _Amiram Eldar_, Jan 20 2020 *)
%t CoefficientList[Series[1/(1-10x+9x^2)^(3/2),{x,0,20}],x] (* _Harvey P. Dale_, Nov 04 2021 *)
%o (PARI) N=20; x='x+O('x^N); Vec(1/(1-10*x+9*x^2)^(3/2))
%o (PARI) {a(n) = sum(k=1, n+1, 3^(n+1-k)*k*binomial(n+1, k)*binomial(n+1+k, k))/2}
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( 1/(1 - 10*x + 9*x^2)^(3/2))); // _Marius A. Burtea_, Jan 20 2020
%o (Magma) [1/2*&+[3^(n-k+1)*k*Binomial(n+1, k)*Binomial(n+k+1,k):k in [1..n+1]]:n in [0..20]]; // _Marius A. Burtea_, Jan 20 2020
%Y Column 5 of A331514.
%Y Cf. A084771.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jan 19 2020