login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036068
Expansion of (-1+1/(1-3*x)^3)/(9*x).
6
1, 6, 30, 135, 567, 2268, 8748, 32805, 120285, 433026, 1535274, 5373459, 18600435, 63772920, 216827928, 731794257, 2453663097, 8178876990, 27119434230, 89494132959, 294052151151, 962352494676, 3138105960900, 10198844372925
OFFSET
0,2
COMMENTS
G.f. for a(n)=A027472(n+3), n >= 0, is 1/(1-3*x)^3.
FORMULA
a(n) = 3^(n-1)*binomial(n+3, 2); G.f.: (-1+(1-3*x)^(-3))/(x*3^2)=(1-3*x+3*x^2)/(1-3*x)^3.
G.f.: F(4,1;2;3x); [From Paul Barry, Sep 03 2008]
D-finite with recurrence: (n+1)*a(n) +3*(-n-3)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
MATHEMATICA
CoefficientList[Series[((1/(1-3x))^3-1)/(9x), {x, 0, 30}], x] (* Harvey P. Dale, Nov 26 2018 *)
CROSSREFS
Cf. A001792, A027472. a(n)= A030524(n+1, 1) (first column of triangle).
Sequence in context: A232061 A247386 A317755 * A162743 A224290 A081895
KEYWORD
easy,nonn
STATUS
approved