login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140802
a(n) = binomial(n+3, 3)*8^n.
9
1, 32, 640, 10240, 143360, 1835008, 22020096, 251658240, 2768240640, 29527900160, 307090161664, 3126736191488, 31267361914880, 307863255777280, 2990671627550720, 28710447624486912, 272749252432625664, 2567051787601182720, 23959150017611038720
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=3) of 9 objects: r, s, t, u, v, w, z, x, y with repetition allowed, containing exactly (3) three u's.
Example:
(n=4) a(1)=32
uuur, uuru, uruu, ruuu,
uuus, uusu, usuu, suuu,
uuut, uutu, utuu, tuuu,
uuuv, uuvu, uvuu, vuuu,
uuuw, uuwu, uwuu, wuuu,
uuuz, uuzu, uzuu, zuuu,
uuux, uuxu, uxuu, xuuu,
uuuy, uuyu, uyuu, yuuu
FORMULA
G.f.: 1/(1-8*x)^4. - Vincenzo Librandi, Oct 16 2011
With offset = 3, e.g.f.: exp(8x)*x^3/3!. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 1176*log(8/7) - 156.
Sum_{n>=0} (-1)^n/a(n) = 1944*log(9/8) - 228. (End)
MAPLE
seq(binomial(n+3, 3)*8^n, n=0..19);
MATHEMATICA
nn = 21; Drop[Range[0, nn]!CoefficientList[Series[x^3/3! Exp[8x], {x, 0, nn}], x], 3] (* Geoffrey Critzer, Oct 03 2013 *)
PROG
(Magma) [8^n* Binomial(n+3, 3): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
CROSSREFS
Sequence in context: A292880 A255262 A181240 * A028204 A028190 A028202
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Jul 15 2008
STATUS
approved