|
|
A028190
|
|
Expansion of 1/((1-5x)(1-8x)(1-9x)(1-10x)).
|
|
0
|
|
|
1, 32, 647, 10570, 152481, 2028012, 25481947, 307098110, 3585577061, 40841792992, 456139166847, 5013707912850, 54390770364841, 583654905773972, 6205991828373347, 65478677349042790, 686305950702955821
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 19*a(n-1) - 90*a(n-2) + (8^(n+1) - 5^(n+1))/3; a(0)=1, a(1)=32. - Vincenzo Librandi, Mar 12 2011
a(n) = 32*a(n-1) - 377*a(n-2) + 1930*a(n-3) - 3600*a(n-4); a(0)=1, a(1)=32, a(2)=647, a(3)=10570. - Harvey P. Dale, Apr 28 2013
a(n) = (6*10^(n+3) - 15*9^(n+3) + 10*8^(n+3) - 5^(n+3))/60. - Yahia Kahloune, Jun 05 2013
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-5x)(1-8x)(1-9x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{32, -377, 1930, -3600}, {1, 32, 647, 10570}, 30] (* Harvey P. Dale, Apr 28 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|