login
A028204
Expansion of 1/((1-6*x)*(1-7*x)*(1-9*x)*(1-10*x)).
1
1, 32, 645, 10480, 150101, 1979712, 24649045, 294242960, 3402478101, 38387226592, 424748805845, 4627041422640, 49770222820501, 529800364460672, 5591164247433045, 58580499720429520, 610040416273729301
OFFSET
0,2
FORMULA
a(n) = 19*a(n-1) - 90*a(n-2) + 7^(n+1) - 6^(n+1), n >= 2. - Vincenzo Librandi, Mar 13 2011
a(n) = 7^(n+3)/6 - 3^(2*n+5)/2 - 3*6^(n+1) + 25*10^(n+1)/3. - R. J. Mathar, Mar 14 2011
a(n) = 32*a(n-1) - 379*a(n-2) + 1968*a(n-3) - 3780*a(n-4). - Muniru A Asiru, Aug 31 2018
MAPLE
seq(coeff(series(((1-6*x)*(1-7*x)*(1-9*x)*(1-10*x))^(-1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Aug 31 2018
MATHEMATICA
CoefficientList[Series[1/((1-6x)(1-7x)(1-9x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{32, -379, 1968, -3780}, {1, 32, 645, 10480}, 30] (* Harvey P. Dale, Aug 05 2018 *)
PROG
(GAP) a:=[1, 32, 645, 10480];; for n in [5..22] do a[n]:=32*a[n-1]-379*a[n-2]+1968*a[n-3]-3780*a[n-4]; od; a; # Muniru A Asiru, Aug 31 2018
CROSSREFS
Sequence in context: A255262 A181240 A140802 * A028190 A028202 A028185
KEYWORD
nonn
STATUS
approved