Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Aug 28 2022 04:23:03
%S 1,32,640,10240,143360,1835008,22020096,251658240,2768240640,
%T 29527900160,307090161664,3126736191488,31267361914880,
%U 307863255777280,2990671627550720,28710447624486912,272749252432625664,2567051787601182720,23959150017611038720
%N a(n) = binomial(n+3, 3)*8^n.
%C With a different offset, number of n-permutations (n>=3) of 9 objects: r, s, t, u, v, w, z, x, y with repetition allowed, containing exactly (3) three u's.
%C Example:
%C (n=4) a(1)=32
%C uuur, uuru, uruu, ruuu,
%C uuus, uusu, usuu, suuu,
%C uuut, uutu, utuu, tuuu,
%C uuuv, uuvu, uvuu, vuuu,
%C uuuw, uuwu, uwuu, wuuu,
%C uuuz, uuzu, uzuu, zuuu,
%C uuux, uuxu, uxuu, xuuu,
%C uuuy, uuyu, uyuu, yuuu
%H Vincenzo Librandi, <a href="/A140802/b140802.txt">Table of n, a(n) for n = 0..400</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (32,-384,2048,-4096).
%F G.f.: 1/(1-8*x)^4. - _Vincenzo Librandi_, Oct 16 2011
%F With offset = 3, e.g.f.: exp(8x)*x^3/3!. - _Geoffrey Critzer_, Oct 03 2013
%F From _Amiram Eldar_, Aug 28 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 1176*log(8/7) - 156.
%F Sum_{n>=0} (-1)^n/a(n) = 1944*log(9/8) - 228. (End)
%p seq(binomial(n+3,3)*8^n,n=0..19);
%t nn = 21; Drop[Range[0, nn]!CoefficientList[Series[x^3/3! Exp[8x],{x, 0, nn}], x], 3] (* _Geoffrey Critzer_, Oct 03 2013 *)
%o (Magma) [8^n* Binomial(n+3, 3): n in [0..20]]; // _Vincenzo Librandi_, Oct 16 2011
%K nonn,easy
%O 0,2
%A _Zerinvary Lajos_, Jul 15 2008