login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174113
Smallest number k such that k, k+1, and k+2 are all divisible by an n-th power.
4
48, 1375, 33614, 2590623, 26890623, 2372890624, 70925781248, 2889212890624, 61938212890624, 4497636425781248, 8555081787109375, 2665760081787109375, 98325140081787109375, 198816740081787109374, 11776267480163574218750, 872710687480163574218750, 50783354512519836425781248
OFFSET
2,1
COMMENTS
Least of the smallest trio of consecutive numbers divisible by an n-th power.
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1375, p. 135, Ellipses, Paris 2008.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..677 (next term has 1001 digits)
FORMULA
5^n < a(n) < 30^n. Can the lower bound be improved? - Charles R Greathouse IV, Jan 16 2012
EXAMPLE
a(3) = 1375 because
1375 = 11 * 5^3;
1376 = 172 * 2^3;
1377 = 51 * 3^3.
MAPLE
with(numtheory):for n from 2 to 6 do: i:=0:for k from 1 to 3000000 while(i=0) do:j:=0:
for a from 0 to 2 do: ii:=0:for m from 1 to 4 while(ii=0) do:p:=ithprime(m)^n:if irem(k+a, p)=0 then j:=j+1:ii:=1:else fi:od:od:if j=3 then i:=1:print(k):else fi:od:od:
PROG
(PARI) a(n)=my(ch, t, best=30^n); forprime(a=2, 29, forprime(b=2, 29, if(a==b, next); ch=chinese(Mod(0, a^n), Mod(-1, b^n)); if(lift(ch)>=best, next); forprime(c=2, 29, if(a==c || b==c, next); t=lift(chinese(ch, Mod(-2, c^n))); if(t<best, best=t)))); best \\ Charles R Greathouse IV, Jan 16 2012
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 08 2010
EXTENSIONS
a(8)-a(18) from Charles R Greathouse IV, Jan 16 2012
STATUS
approved