The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063528 Smallest number such that it and its successor are both divisible by an n-th power larger than 1. 13
 2, 8, 80, 80, 1215, 16767, 76544, 636416, 3995648, 24151040, 36315135, 689278976, 1487503359, 1487503359, 155240824832, 785129144319, 4857090670592, 45922887663615, 157197025673216, 1375916505694208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Lesser of the smallest pair of consecutive numbers divisible by an n-th power. To get a(j), max exponent[=A051953(n)] of a(j) and 1+a(j) should exceed (j-1). One can find a solution for primes p and q by solving p^n*i + 1 = q^n*j; then p^n*i is a solution. This solution will be less than (p*q)^n but greater than max(p,q)^n. Thus finding the solutions for 2, 3 (p=2,q=3 and p=3,q=2), one need at most also look at 2, 5 and 3, 5. It appears that the solution with 2, 3 is always optimal. - Franklin T. Adams-Watters, May 27 2011. REFERENCES J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 242, p. 67, Ellipses, Paris 2008. LINKS Franklin T. Adams-Watters, Table of n, a(n) for n = 1..100 EXAMPLE a=80 since 2^4=16 divides 80 and 3^4=81 divides 81 MATHEMATICA k = 4; Do[k = k - 2; a = b = 0; While[ b = Max[ Transpose[ FactorInteger[k]] []]; a <= n || b <= n, k++; a = b]; Print[k - 1], {n, 0, 19} ] PROG (PARI) b(n, p=2, q=3)=local(i); i=Mod(p, q^n)^-n; min(p^n*lift(i)-1, p^n*lift(-i)) a(n)=local(r); r=b(n); if(r>5^n, r=min(r, min(b(n, 2, 5), b(n, 3, 5)))); r /* Franklin T. Adams-Watters, May 27 2011 */ CROSSREFS We need A051903(a[n]) > n-1 and A051903(a[n]+1) > n-1. Cf. A068780, A068781, A068140, A068782, A068783, A068784. Cf. A045330, A059737. Sequence in context: A057984 A215741 A071254 * A259705 A073561 A258970 Adjacent sequences:  A063525 A063526 A063527 * A063529 A063530 A063531 KEYWORD nonn AUTHOR Erich Friedman, Aug 01 2001 EXTENSIONS More terms from Jud McCranie, Aug 06 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 13:57 EDT 2021. Contains 348049 sequences. (Running on oeis4.)