login
A073561
Number of Fibonacci numbers F(k), k <= 10^n, whose initial digit is 5.
0
2, 8, 80, 792, 7918, 79182, 791817, 7918132, 79181254, 791812468, 7918124617
OFFSET
1,1
FORMULA
Limit_{n->oo} a(n)/10^n = log(6/5), where the base is 10. - Robert Gerbicz, Sep 05 2002
EXAMPLE
a(2) = 8 because there are 8 Fibonacci numbers up to 10^2 whose initial digit is 5.
PROG
(PARI) lista(nn) = my(m=log(quadgen(5)), c=1, d=log(10)/m, q, r=log(sqrt(5))/m, s=4-log(5)/m, t=4-log(6)/m, u=-2); for(n=1, nn, u=10*u+27; until(u<r+=d, q=frac(r); if(q<s && q>t, c++)); print1(c, ", ")); \\ Jinyuan Wang, Dec 09 2024
CROSSREFS
Sequence in context: A071254 A063528 A259705 * A258970 A230880 A361425
KEYWORD
nonn,base,more
AUTHOR
Shyam Sunder Gupta, Aug 15 2002
EXTENSIONS
More terms from Robert Gerbicz, Sep 05 2002
a(9)-a(11) from Sean A. Irvine and Jinyuan Wang, Dec 10 2024
STATUS
approved