OFFSET
1,2
FORMULA
Limit_{n->oo} a(n)/10^n = log(9/8), where the base is 10. - Robert Gerbicz, Sep 05 2002
EXAMPLE
a(2) = 7 because there are 7 Fibonacci numbers F(k), k <= 10^2 whose initial digit is 8, namely:
k F(k)
6 8
11 89
30 832040
54 86267571272
73 806515533049393
78 8944394323791464
97 83621143489848422977
MATHEMATICA
Table[Count[Fibonacci[Range[10^n]], _?(IntegerDigits[#][[1]]==8&)], {n, 1, 5}] (* Harvey P. Dale, Feb 26 2023 *)
PROG
(PARI) lista(nn) = my(m=log(quadgen(5)), c=0, d=log(10)/m, q, r=log(sqrt(5))/m, s=5-log(8)/m, t=5-log(9)/m, u=-3); for(n=1, nn, u=10*u+36; until(u<r+=d, q=frac(r); if(q<s && q>t, c++)); print1(c, ", ")); \\ Jinyuan Wang, Dec 09 2024
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Shyam Sunder Gupta, Aug 15 2002
EXTENSIONS
Corrected and extended by Robert Gerbicz, Sep 05 2002
Data corrected by Harvey P. Dale_, Feb 25 2023 [The terms were off by 1]
Edited by N. J. A. Sloane, Feb 25 2023
a(9)-a(11) from Sean A. Irvine and Jinyuan Wang, Dec 10 2024
a(0) removed by Sean A. Irvine, Dec 10 2024
STATUS
approved