login
A068781
Lesser of two consecutive numbers each divisible by a square.
65
8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
OFFSET
1,1
COMMENTS
Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024
LINKS
Kaisa Matomäki, Maksym Radziwiłł and Terence Tao, Sign patterns of the Liouville and Möbius functions, Forum of Mathematics, Sigma, Vol. 4. (2016), e14.
FORMULA
A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015
EXAMPLE
44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From Gus Wiseman, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
(4,8)
(9,12,16,18,20,24)
(25,27)
(28,32,36,40,44)
(45,48)
(49)
(50,52,54,56,60,63)
(64,68,72,75)
(76,80)
(81,84,88,90,92,96,98)
(99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
MATHEMATICA
Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000, n, 1], Table[False, {n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
Max/@Split[Select[Range[100], !SquareFreeQ[#]&], #1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
PROG
(Haskell)
a068781 n = a068781_list !! (n-1)
a068781_list = filter ((== 0) . a261869) [1..]
-- Reinhard Zumkeller, Sep 04 2015
(PARI) isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021
CROSSREFS
Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.
Sequence in context: A381315 A175496 A048109 * A365864 A212861 A333961
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Mar 04 2002
STATUS
approved