|
|
A068140
|
|
Smaller of two consecutive numbers each divisible by a cube greater than one.
|
|
19
|
|
|
80, 135, 296, 343, 351, 375, 512, 567, 624, 728, 783, 944, 999, 1160, 1215, 1375, 1376, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2079, 2240, 2295, 2375, 2400, 2456, 2511, 2624, 2672, 2727, 2888, 2943, 3087, 3104, 3159, 3320, 3375, 3429, 3536, 3591
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Cubeful numbers with cubeful successors. This is to cubes as A068781 is to squares. 1375 is the smallest of three consecutive numbers divisible by a cube, since 1375 = 5^3 * 11 and 1376 = 2^5 * 43 and 1377 = 3^4 * 17. What is the smallest of four consecutive numbers divisible by a cube? Of n consecutive numbers divisible by a cube? - Jonathan Vos Post, Sep 18 2007
22624 is the smallest of four consecutive numbers each divisible by a cube, with factorizations 2^5 * 7 * 101, 5^3 * 181, 2 * 3^3 * 419, and 11^3 * 17. - D. S. McNeil, Dec 10 2010
18035622 is the smallest of five consecutive numbers each divisible by a cube. 4379776620 is the smallest of six consecutive numbers each divisible by a cube. 1204244328624 is the smallest of seven consecutive numbers each divisible by a cube. - Donovan Johnson, Dec 13 2010
The sequence is the union, over all pairs of distinct primes (p,q), of numbers == 0 mod p^3 and == -1 mod q^3 or vice versa. - Robert Israel, Aug 13 2018
The asymptotic density of this sequence is 1 - 2/zeta(3) + Product_{p prime} (1 - 2/p^3) = 1 - 2 * A088453 + A340153 = 0.013077991848467056243... - Amiram Eldar, Feb 16 2021
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
343 is a term as 343 = 7^3 and 344= 2^3 * 43.
|
|
MAPLE
|
isA068140 := proc(n)
isA046099(n) and isA046099(n+1) ;
end proc:
for n from 1 to 4000 do
if isA068140(n) then
printf("%d, ", n) ;
end if;
|
|
MATHEMATICA
|
a = b = 0; Do[b = Max[ Transpose[ FactorInteger[n]] [[2]]]; If[a > 2 && b > 2, Print[n - 1]]; a = b, {n, 2, 5000}]
Select[Range[2, 6000], Max[Transpose[FactorInteger[ # ]][[2]]] > 2 && Max[Transpose[FactorInteger[ # + 1]][[2]]] > 2 &] (* Jonathan Vos Post, Sep 18 2007 *)
SequencePosition[Table[If[AnyTrue[Rest[Divisors[n]], IntegerQ[Surd[#, 3]]&], 1, 0], {n, 3600}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 18 2020 *)
|
|
CROSSREFS
|
Cf. A046099, A063528, A068781, A068782, A068783, A068784, A088453, A122692, A174113, A340152, A340153.
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|