login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063527
Numbers that are divisible by all of their 1 and 2 digit substrings.
5
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 1111, 1155, 1248, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 27216, 31248, 111111, 116688, 121212, 142128, 212184, 222222, 242424, 313131, 321216, 333333, 363636, 368424, 444444
OFFSET
1,2
COMMENTS
Subsequence of A034838. - Michel Marcus, Sep 19 2014
EXAMPLE
1155 is divisible by 1, 1, 5, 5, 11, 15 and 55.
MATHEMATICA
d12Q[n_]:=Module[{idn=IntegerDigits[n], idn2}, idn2=FromDigits/@Partition[ idn, 2, 1]; FreeQ[idn, 0]&&And@@Divisible[n, idn]&&And@@Divisible[n, idn2]]; Select[Range[400000], d12Q] (* Harvey P. Dale, Aug 11 2015 *)
PROG
(Python)
from itertools import product
A063527_list = []
for g in range(1, 7):
....for n in product('123456789', repeat=g):
........s = ''.join(n)
........m = int(s)
........if not any([m % int(d) for d in s]):
............for i in range(len(s)-1):
................if m % int(s[i:i+2]):
....................break
............else:
................A063527_list.append(m) # Chai Wah Wu, Sep 18 2014
(PARI) is(n) = {my(d = digits(n), t = 0); s = Set(d); if(s[1] == 0, return(0)); for(i = 1, 2, for(j = 1, #d - i + 1, t++; fr = fromdigits(vector(i, k, d[j+k-1])); if(n % fr != 0, return(0)); ) ); 1 } \\ David A. Corneth, Sep 17 2019
CROSSREFS
Cf. A034838 (integers divisible by all their digits).
Sequence in context: A178158 A337184 A034838 * A209933 A182183 A308472
KEYWORD
base,easy,nonn
AUTHOR
Erich Friedman, Aug 01 2001
EXTENSIONS
More terms from David A. Corneth, Sep 17 2019
STATUS
approved