login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243676
Number of hypoplactic classes of 4-parking functions of length n.
9
1, 1, 9, 113, 1649, 26225, 440985, 7711009, 138792929, 2554489505, 47854963881, 909495557393, 17492724268369, 339846019830673, 6659441891042105, 131467175048437569, 2612224160086781889, 52201209713045788737, 1048450942860766632777, 21153308764742204273329, 428520989167282737342513
OFFSET
0,3
COMMENTS
This is almost certainly the sequence of small 5-Schroeder numbers as defined by Yang-Jiang (2021). It would be nice to have a proof. Then we could confirm Weiner's conjectured formulas, and extend the sequence. Yang & Jiang (2021) give an explicit formula for the small m-Schroeder numbers in Theorems 2.4 and 2.9. - N. J. A. Sloane, Mar 28 2021
This is indeed the small 5-Schroeder numbers defined by Yang and Jiang (2021) in Theorems 2.4 and 2.9. - Jun Yan, Apr 13 2024
REFERENCES
Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
LINKS
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 23.
Jun Yan, Results on pattern avoidance in parking functions, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 4.4.
FORMULA
a(n+1) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(4*i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - Michael D. Weiner, May 25 2017
a(n) = Sum_{i=1..n} binomial(4*n, i-1)*binomial(n, i)*2^(i-1)/n (conjectured). - Michael D. Weiner, Jul 24 2019 [This is correct for n>0 - Jun Yan, Apr 13 2024]
Let D(n) be the set of 4-Dyck paths with n up-steps of size 4, 4n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n)}2^(peak(d) - 1). - Jun Yan, Apr 13 2024
a(n) = hypergeom([1 - n, -4*n], [2], 2). - Peter Luschny, Apr 13 2024
MAPLE
a := proc(n) option remember; if n <= 1 then return 1 fi;
-(a(n-2)*(-5440*n^7 + 42080*n^6 - 131548*n^5 + 212750*n^4 - 189160*n^3 + 90725*n^2 - 21387*n + 1890)+ a(n-1)*(-118660*n^7 + 739880*n^6 - 1876702*n^5 + 2492120*n^4 - 1855960*n^3 + 768230*n^2 - 161913*n + 13230)) / (5440*n^7 - 25760*n^6 + 43468*n^5 - 29510*n^4 + 4750*n^3 + 1945*n^2 - 468*n) end:
seq(a(n), n = 0..20); # Peter Luschny, Apr 13 2024
MATHEMATICA
a[n_] := Hypergeometric2F1[1 - n, -4 n, 2, 2];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 13 2024 *)
CROSSREFS
Appears to equal A260332(n)/2 for n > 0. - N. J. A. Sloane, Mar 28 2021
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Sequence in context: A155624 A165224 A342296 * A012116 A362576 A356240
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 14 2014
EXTENSIONS
Added a(0)=1. - N. J. A. Sloane, Mar 28 2021
More terms from Jun Yan, Apr 13 2024
STATUS
approved