login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of hypoplactic classes of 4-parking functions of length n.
9

%I #54 Apr 13 2024 11:54:25

%S 1,1,9,113,1649,26225,440985,7711009,138792929,2554489505,47854963881,

%T 909495557393,17492724268369,339846019830673,6659441891042105,

%U 131467175048437569,2612224160086781889,52201209713045788737,1048450942860766632777,21153308764742204273329,428520989167282737342513

%N Number of hypoplactic classes of 4-parking functions of length n.

%C This is almost certainly the sequence of small 5-Schroeder numbers as defined by Yang-Jiang (2021). It would be nice to have a proof. Then we could confirm Weiner's conjectured formulas, and extend the sequence. Yang & Jiang (2021) give an explicit formula for the small m-Schroeder numbers in Theorems 2.4 and 2.9. - _N. J. A. Sloane_, Mar 28 2021

%C This is indeed the small 5-Schroeder numbers defined by Yang and Jiang (2021) in Theorems 2.4 and 2.9. - _Jun Yan_, Apr 13 2024

%D Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020. See Fig. 23.

%H Jun Yan, <a href="http://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv preprint arXiv:2404.07958 [math.CO], 2024. See Theorem 4.4.

%F a(n+1) = Sum_{i=0..n} Sum_{j=0..i} (-2)^(n-i)*binomial(i,j)*binomial(4*i+j, n)*binomial(n+1,i)/(n+1) (conjectured). - _Michael D. Weiner_, May 25 2017

%F a(n) = Sum_{i=1..n} binomial(4*n, i-1)*binomial(n, i)*2^(i-1)/n (conjectured). - _Michael D. Weiner_, Jul 24 2019 [This is correct for n>0 - _Jun Yan_, Apr 13 2024]

%F Let D(n) be the set of 4-Dyck paths with n up-steps of size 4, 4n down-steps of size 1 and never go below the x-axis. For every d in D(n), let peak(d) be the number of peaks in d. Then a(n) = Sum_{d in D(n)}2^(peak(d) - 1). - _Jun Yan_, Apr 13 2024

%F a(n) = hypergeom([1 - n, -4*n], [2], 2). - _Peter Luschny_, Apr 13 2024

%p a := proc(n) option remember; if n <= 1 then return 1 fi;

%p -(a(n-2)*(-5440*n^7 + 42080*n^6 - 131548*n^5 + 212750*n^4 - 189160*n^3 + 90725*n^2 - 21387*n + 1890)+ a(n-1)*(-118660*n^7 + 739880*n^6 - 1876702*n^5 + 2492120*n^4 - 1855960*n^3 + 768230*n^2 - 161913*n + 13230)) / (5440*n^7 - 25760*n^6 + 43468*n^5 - 29510*n^4 + 4750*n^3 + 1945*n^2 - 468*n) end:

%p seq(a(n), n = 0..20); # _Peter Luschny_, Apr 13 2024

%t a[n_] := Hypergeometric2F1[1 - n, -4 n, 2, 2];

%t Table[a[n], {n, 0, 20}] (* _Peter Luschny_, Apr 13 2024 *)

%Y Appears to equal A260332(n)/2 for n > 0. - _N. J. A. Sloane_, Mar 28 2021

%Y The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - _N. J. A. Sloane_, Mar 28 2021

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Jun 14 2014

%E Added a(0)=1. - _N. J. A. Sloane_, Mar 28 2021

%E More terms from _Jun Yan_, Apr 13 2024