login
A081258
Numbers k > 1 such that k^3 - 1 (or equivalently k^2 + k + 1) has no prime factor greater than k.
3
16, 18, 22, 30, 49, 67, 68, 74, 79, 81, 87, 100, 102, 121, 135, 137, 146, 149, 154, 158, 159, 163, 165, 169, 172, 178, 181, 191, 211, 221, 229, 230, 235, 256, 262, 263, 269, 273, 277, 291, 292, 301, 305, 313, 315, 324, 326, 334, 352, 361, 372, 373, 380, 393
OFFSET
1,1
COMMENTS
One might also include 1 as a term here. - R. J. Mathar, Oct 11 2011
LINKS
EXAMPLE
16 is a term: 16^3 - 1 = 4095 = 3*3*5*7*13.
MAPLE
isA081258 := proc(n)
numtheory[factorset](n^3-1) ;
if max(op(%)) <= n then
true;
else
false;
end if;
end proc;
for n from 1 to 400 do
if isA081258(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Oct 11 2011
MATHEMATICA
Select[Range[2, 1000], FactorInteger[#^3 - 1][[-1, 1]] <= #&] (* Jean-François Alcover, Jun 15 2020 *)
CROSSREFS
Sequence in context: A065426 A308607 A097746 * A317423 A337374 A255847
KEYWORD
easy,nonn
AUTHOR
Jan Fricke, Mar 14 2003
EXTENSIONS
Name changed by Robert Israel, Nov 11 2016
STATUS
approved