OFFSET
0,1
COMMENTS
a(n) is the numerator of 2^(2*n+1)*(n!)^2/(2*n+1)/(2*n)!. The corresponding denominator is A001803. - Daniel Suteu, Feb 03 2017
a(n) is the numerator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding denominator is A001803(n). - Mohammed Yaseen, Jul 25 2023
a(n) is the denominator of (1/Pi) * Integral_{x=0..Pi/2} sin(x)^(2*n) dx. The corresponding numerator is A001790(n). - Mohammed Yaseen, Sep 19 2023
a(n) = numerator(Pi*binomial(n, -1/2)). - Peter Luschny, Dec 05 2024
MAPLE
denom((binomial(2n, n)*4^-n)/2); # Stephen Crowley, Mar 05 2007
MATHEMATICA
Table[Numerator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Dec 28 2004
EXTENSIONS
More terms from Joshua Zucker, May 15 2006
STATUS
approved