login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101927
E.g.f. of sin(arcsinh(x)) (odd powers only).
4
1, -2, 20, -520, 26000, -2132000, 260104000, -44217680000, 9993195680000, -2898026747200000, 1049085682486400000, -463695871658988800000, 245758811979264064000000, -153845016299019304064000000
OFFSET
1,2
COMMENTS
Absolute values are expansion of sinh(arcsin(x)).
LINKS
FORMULA
E.g.f.: sin(arcsinh(x)) = x*sqrt(1+x^2)*(1 - 5*x^2/(G(0) + 5*x^2))); G(k) = (2*k+2)*(2*k+3) - x^2*(4*k^2+8*k+5) + x^2*(2*k+2)*(2*k+3)*(4*k^2+16*k+17)/G(k+1);
for sinh(arcsin(x)) = x*sqrt(1-x^2)*(1 + 5*x^2/(G(0) - 5*x^2))); G(k) = (2*k+2)*(2*k+3) + x^2*(4*k^2+8*k+5) - x^2*(2*k+2)*(2*k+3)*(4*k^2+16*k+17)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 19 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 + (4*k^2+4*k+2)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) ~ (-1)^(n+1) * cosh(Pi/2) * 2^(2*n-1) * n^(2*n-2) / exp(2*n). - Vaclav Kotesovec, Oct 23 2013
|a(n+2)| = Product_{k=0..n} ((2k+1)^2+1). - Andrew Slattery, Jul 03 2022
EXAMPLE
sin(arcsinh(x)) = x - 2x^3/3! + 20x^5/5! - 520x^7/7! + 26000x^9/9! - ...
MAPLE
seq(coeff(series(factorial(n)*sin(arcsinh(x)), x, n+1), x, n), n=1..30, 2); # Muniru A Asiru, Jul 22 2018
MATHEMATICA
Table[n!*SeriesCoefficient[Sin[ArcSinh[x]], {x, 0, n}], {n, 1, 40, 2}] (* Vaclav Kotesovec, Oct 23 2013 *)
CROSSREFS
Bisection of A006228.
Sequence in context: A103353 A009344 A009699 * A341269 A157317 A350794
KEYWORD
sign
AUTHOR
Ralf Stephan, Dec 28 2004
EXTENSIONS
Name corrected by Andrew Slattery, Jul 03 2022
STATUS
approved