OFFSET
0,2
FORMULA
a(n) ~ (2*n)! * (-1)^(n+1) / (n * log(1+sqrt(2))^(2*n)). - Vaclav Kotesovec, Jan 23 2015
MATHEMATICA
Log[ 1+Sin[ x ]^2 ] (* Even Part *)
nn = 20; Table[(CoefficientList[Series[Log[1 + Sin[x]^2], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 23 2015 *)
PROG
(Maxima) b(n):=sum(((-1)^(k-1)*((-1)^(n-2*k)+1)*sum((2*i-2*k)^n*binomial(2*k, i)*(-1)^((n+2*k)/2-i), i, 0, k))/(k*2^(2*k)), k, 1, n/2);
a(n)=b(2*n); /* Vladimir Kruchinin, Jun 28 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved