login
A296789
Expansion of e.g.f. exp(x*arctanh(x)) (even powers only).
2
1, 2, 20, 504, 24464, 1959840, 234852672, 39370660224, 8799246209280, 2528787321598464, 908585701684024320, 399070678264750356480, 210373049449102957645824, 131083661069772517440921600, 95304505860052894815543705600, 79961055068441273887848131297280
OFFSET
0,2
FORMULA
a(n) = (2*n)! * [x^(2*n)] exp(x*arctanh(x)).
a(n) ~ 2^(2*n + 2) * n^(2*n) / exp(2*n). - Vaclav Kotesovec, Dec 21 2017
EXAMPLE
exp(x*arctanh(x)) = 1 + 2*x^2/2! + 20*x^4/4! + 504*x^6/6! + 24464*x^8/8! + ...
MATHEMATICA
nmax = 15; Table[(CoefficientList[Series[Exp[x ArcTanh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 15; Table[(CoefficientList[Series[Exp[x (Log[1 + x] - Log[1 - x])/2], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 20 2017
STATUS
approved