login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296788
Expansion of e.g.f. exp(x*arcsinh(x)) (even powers only).
2
1, 2, 8, 54, 104, 18810, -1648428, 247726374, -49445941200, 12841169289714, -4206667789245780, 1697448414191239710, -827415782970517712376, 479396168140498731959850, -325673237888367403728512700, 256401822876859593450127851030, -231597610351491427264049084814240
OFFSET
0,2
FORMULA
a(n) = (2*n)! * [x^(2*n)] exp(x*arcsinh(x)).
a(n) ~ -(-1)^n * 2^(2*n) * n^(2*n-1) / exp(2*n + Pi/2). - Vaclav Kotesovec, Dec 21 2017
EXAMPLE
exp(x*arcsinh(x)) = 1 + 2*x^2/2! + 8*x^4/4! + 54*x^6/6! + 104*x^8/8! + ...
MATHEMATICA
nmax = 16; Table[(CoefficientList[Series[Exp[x ArcSinh[x]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
nmax = 16; Table[(CoefficientList[Series[(x + Sqrt[1 + x^2])^x, {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Dec 20 2017
STATUS
approved