login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277414
E.g.f.: Series_Reversion( Sum_{n>=1} (-1)^(n-1) * x^(2*n-1)/(n*(n+1)/2) ) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)!.
0
1, 2, 20, 504, 23968, 1851520, 211575936, 33566973440, 7062343608320, 1903365244784640, 639521861269258240, 262112584945787699200, 128722417690687207833600, 74622047155540651999232000, 50422787106606997974155264000, 39283625022760603948312795545600, 34956170646455883939814603698995200, 35235028408984566235493250881290240000, 39938723513704723231184585043746173747200
OFFSET
1,2
EXAMPLE
E.g.f.: A(x) = x + 2*x^3/3! + 20*x^5/5! + 504*x^7/7! + 23968*x^9/9! + 1851520*x^11/11! + 211575936*x^13/13! + 33566973440*x^15/15! +...
such that
Series_Reversion(A(x)) = x - x^3/3 + x^5/6 - x^7/10 + x^9/15 - x^11/21 + x^13/28 +...+ (-1)^(n-1)*x^(2*n-1)/(n*(n+1)/2) +...
PROG
(PARI) {a(n) = (2*n-1)! * polcoeff( serreverse( sum(m=1, n, (-1)^(m-1) * x^(2*m-1) / (m*(m+1)/2) ) +O(x^(2*n+2))), 2*n-1)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A279839 A279837 A279200 * A296789 A168136 A103353
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2016
STATUS
approved