login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277413
E.g.f.: Series_Reversion( x + Sum_{n>=2} (-1)^(n-1) * x^(2*n-1)/(n*(n-1)) ) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)!.
0
1, 3, 70, 4620, 599256, 128648520, 41281606080, 18507916627200, 11049593741746560, 8474451191616009600, 8119493428719228192000, 9504049395027168805824000, 13345312208487981260926464000, 22140681034117932250214874624000, 42846437958647788197412779939840000, 95657301566159892238019686222356480000, 244038306493164073323605513327887380480000
OFFSET
1,2
EXAMPLE
E.g.f.: A(x) = x + 3*x^3/3! + 70*x^5/5! + 4620*x^7/7! + 599256*x^9/9! + 128648520*x^11/11! + 41281606080*x^13/13! + 18507916627200*x^15/15! +...
such that
Series_Reversion(A(x)) = x - x^3/(1*2) + x^5/(2*3) - x^7/(3*4) + x^9/(4*5) - x^11/(5*6) + x^13/(6*7) +...+ (-1)^(n-1)*x^(2*n-1)/(n*(n-1)) +...
PROG
(PARI) {a(n) = (2*n-1)! * polcoeff( serreverse(x - sum(m=2, n, (-1)^m * x^(2*m-1) / (m*(m-1)) ) +O(x^(2*n+2))), 2*n-1)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A000282 A322775 A338408 * A210920 A140048 A135951
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2016
STATUS
approved