The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338408 E.g.f. A(x) satisfies: [x^n] (1 + n*x - A(x))^(2*n) = 0, for n > 0. 2
 1, 3, 70, 4515, 567576, 116389295, 35111089728, 14574226069095, 7944376570503040, 5494208894263886139, 4694820247236686649600, 4853712224007783889422923, 5968210130160831707746406400, 8605241830169634366425696447655, 14375558607944255605507888571539456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Compare to: [x^n] (1 + n*x - W(x))^n = 0, for n>0, where W(x) = Sum_{n>=1} (n-1)^(n-1)*x^n/n! = 1 + x/LambertW(-x). Compare to: [x^n] (1 + n*x - C(x))^(n+1) = 0, for n>0, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..200 FORMULA a(n) ~ c * d^n * n!^2 / n^2, where d = (1+r) / ((-1 + exp(r + LambertW(-1, -exp(-r)*r))) * LambertW(-exp(-1-r)*(1+r))) = 8.406107401279769476199925123910168..., r = 0.7545302104650497245839827141610818561001159135034... is the root of the equation r*(1 + r + LambertW(-exp(-1 - r)*(1 + r))) = -(1 + r)*(r + LambertW(-1, -exp(-r)*r)) and c = 0.031468237083... - Vaclav Kotesovec, Aug 12 2021, updated Dec 29 2021 EXAMPLE E.g.f.: A(x) = x + 3*x^2/2! + 70*x^3/3! + 4515*x^4/4! + 567576*x^5/5! + 116389295*x^6/6! + 35111089728*x^7/7! + 14574226069095*x^8/8! + 7944376570503040*x^9/9! + 5494208894263886139*x^10/10! + ... ILLUSTRATION OF DEFINITION. The table of coefficients of x^k/k! in (1 + n*x - A(x))^(2*n) begins: n=0: [1, 0, 0, 0, 0, 0, 0, 0, ...]; n=1: [1, 0, -6, -140, -8976, -1130952, -232274240, -70128541380, ...]; n=2: [1, 4, 0, -364, -21504, -2530284, -504753152, -149907313980, ...]; n=3: [1, 12, 102, 0, -45960, -5063916, -928551600, -263868802728, ...]; n=4: [1, 24, 480, 7000, 0, -9924168, -1748523008, -457324971720, ...]; n=5: [1, 40, 1410, 42140, 939360, 0, -3259331360, -836926230780, ...]; n=6: [1, 60, 3264, 158220, 6595584, 208807788, 0, -1509806731620, ...]; n=7: [1, 84, 6510, 460936, 29355816, 1626947196, 69489455728, 0, ...]; ... in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1 + n*x - A(x))^(2*n) = 0, for n > 0. PROG (PARI) {a(n) = my(A=[1], m=1); for(i=1, n, A=concat(A, 0); m=#A; A[#A] = polcoeff( (1 + m*x - x*Ser(A))^(2*m), m)/(2*m) ); n!*A[n]} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A338328, A337758, A350366. Sequence in context: A082942 A000282 A322775 * A277413 A210920 A140048 Adjacent sequences: A338405 A338406 A338407 * A338409 A338410 A338411 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 12:58 EST 2023. Contains 367710 sequences. (Running on oeis4.)