login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338405
a(n) is the smallest number with exactly n divisors d such that sigma(d)/d is an integer.
2
1, 6, 84, 672, 3360, 30240, 393120, 12186720, 164989440, 14024102400, 2144862720, 182313331200, 5705334835200, 96990692198400, 187409525022720, 9602078527641600, 124627334140108800, 2118664680381849600, 19067982123436646400, 209747803357803110400, 3985208263798259097600, 63343836614056539340800, 401177631889024749158400, 1203532895667074247475200
OFFSET
1,2
COMMENTS
a(n) is the smallest number with n multiply-perfect divisors.
Number 1 is only number m such that sigma(d) / d is an integer for all divisors d.
LINKS
David A. Corneth, PARI program
EXAMPLE
a(3) = 84 because 84 with divisors 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84 is the smallest number with 3 multiply-perfect divisors (1, 6 and 28): sigma(1)/1 = 1, sigma(6)/6 = 2, sigma(28)/28 = 2.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], #] &]; m = 7; s = Table[0, {m}]; c = 0; n = 1; While[c < m, i = f[n]; If[i <= m && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 25 2020 *)
PROG
(Magma) [Min([m: m in[1..10^5] | #[d: d in Divisors(m) | IsIntegral(&+Divisors(d) / d)] eq n]): n in [1..6]]
(PARI) a(n) = {my(m=1); while (sumdiv(m, d, !(sigma(d)%d)) != n, m++); m; } \\ Michel Marcus, Oct 25 2020
CROSSREFS
Cf. A000203 (sigma), A007691 (multiply-perfect numbers).
Sequence in context: A288321 A155191 A211171 * A054605 A119576 A371471
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2020
EXTENSIONS
a(8) from Michel Marcus, Oct 25 2020
a(9)-a(13) from Jinyuan Wang, Oct 31 2020
Name clarified by Chai Wah Wu, Nov 01 2020
a(14)-a(20) from David A. Corneth, Nov 02 2020
Terms a(21) onward from Max Alekseyev, Feb 21 2024
STATUS
approved