OFFSET
1,2
COMMENTS
a(n) is the smallest number with n multiply-perfect divisors.
Number 1 is only number m such that sigma(d) / d is an integer for all divisors d.
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..51
David A. Corneth, PARI program
EXAMPLE
a(3) = 84 because 84 with divisors 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84 is the smallest number with 3 multiply-perfect divisors (1, 6 and 28): sigma(1)/1 = 1, sigma(6)/6 = 2, sigma(28)/28 = 2.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], #] &]; m = 7; s = Table[0, {m}]; c = 0; n = 1; While[c < m, i = f[n]; If[i <= m && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 25 2020 *)
PROG
(Magma) [Min([m: m in[1..10^5] | #[d: d in Divisors(m) | IsIntegral(&+Divisors(d) / d)] eq n]): n in [1..6]]
(PARI) a(n) = {my(m=1); while (sumdiv(m, d, !(sigma(d)%d)) != n, m++); m; } \\ Michel Marcus, Oct 25 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2020
EXTENSIONS
a(8) from Michel Marcus, Oct 25 2020
a(9)-a(13) from Jinyuan Wang, Oct 31 2020
Name clarified by Chai Wah Wu, Nov 01 2020
a(14)-a(20) from David A. Corneth, Nov 02 2020
Terms a(21) onward from Max Alekseyev, Feb 21 2024
STATUS
approved