login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A288321
Number of Dyck paths of semilength n such that each positive level has exactly five peaks.
2
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 6, 84, 336, 504, 252, 0, 36, 1134, 15960, 130536, 700560, 2639952, 7260840, 14894712, 23151996, 29957760, 60579792, 319505760, 1930565232, 9852185196, 41993000532, 151747572312, 471322972512, 1275430904496, 3072333948480
OFFSET
0,12
LINKS
MAPLE
b:= proc(n, k, j) option remember;
`if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 5$2)):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 5, 5]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=5 of A288318.
Cf. A000108.
Sequence in context: A351980 A351178 A350947 * A155191 A211171 A338405
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved