login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288324
Number of Dyck paths of semilength n such that each positive level has exactly eight peaks.
2
1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 315, 3465, 17325, 45045, 63063, 45045, 12870, 0, 81, 6075, 200340, 3835755, 48617415, 440531784, 3000152925, 15896972520, 67174514550, 230430986514, 649879542063, 1519950287430, 2963421671535, 4828750295985
OFFSET
0,18
LINKS
MAPLE
b:= proc(n, k, j) option remember;
`if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 8$2)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 8, 8]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=8 of A288318.
Cf. A000108.
Sequence in context: A160194 A217145 A266835 * A317634 A198401 A135609
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved