login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288325
Number of Dyck paths of semilength n such that each positive level has exactly nine peaks.
2
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 440, 6160, 40040, 140140, 280280, 320320, 194480, 48620, 0, 100, 9350, 382800, 9083800, 142638320, 1602400800, 13556342800, 89523519800, 473679520600, 2047398407340, 7334909697400, 22016582387800
OFFSET
0,20
LINKS
MAPLE
b:= proc(n, k, j) option remember;
`if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 9$2)):
seq(a(n), n=0..42);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 9, 9]];
Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=9 of A288318.
Cf. A000108.
Sequence in context: A199835 A350565 A001327 * A222665 A177391 A304289
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved