login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dyck paths of semilength n such that each positive level has exactly nine peaks.
2

%I #8 Jun 02 2018 10:37:32

%S 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,10,440,6160,40040,140140,

%T 280280,320320,194480,48620,0,100,9350,382800,9083800,142638320,

%U 1602400800,13556342800,89523519800,473679520600,2047398407340,7334909697400,22016582387800

%N Number of Dyck paths of semilength n such that each positive level has exactly nine peaks.

%H Alois P. Heinz, <a href="/A288325/b288325.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>

%p b:= proc(n, k, j) option remember;

%p `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)

%p *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))

%p end:

%p a:= n-> `if`(n=0, 1, b(n, 9$2)):

%p seq(a(n), n=0..42);

%t b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];

%t a[n_] := If[n == 0, 1, b[n, 9, 9]];

%t Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *)

%Y Column k=9 of A288318.

%Y Cf. A000108.

%K nonn

%O 0,20

%A _Alois P. Heinz_, Jun 07 2017