login
A288322
Number of Dyck paths of semilength n such that each positive level has exactly six peaks.
2
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 140, 840, 2100, 2310, 924, 0, 49, 2156, 42140, 479220, 3598560, 19184676, 75954564, 229873063, 541427264, 1002386336, 1473318476, 1876489398, 3785310858, 20726607804, 136977861097, 786065454860, 3841493284076
OFFSET
0,14
LINKS
MAPLE
b:= proc(n, k, j) option remember;
`if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 6$2)):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 6, 6]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=6 of A288318.
Cf. A000108.
Sequence in context: A280629 A348188 A238692 * A297650 A085708 A054606
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved