login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288320
Number of Dyck paths of semilength n such that each positive level has exactly four peaks.
2
1, 0, 0, 0, 1, 0, 0, 0, 0, 5, 45, 105, 70, 0, 25, 525, 4950, 26950, 94605, 226925, 383525, 507000, 1016475, 5047875, 26940475, 117108550, 414703200, 1223146475, 3089625550, 7073320775, 16715232600, 48599763900, 175648700900, 673443954000, 2444611549450
OFFSET
0,10
LINKS
MAPLE
b:= proc(n, k, j) option remember;
`if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 4$2)):
seq(a(n), n=0..35);
MATHEMATICA
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 4, 4]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Column k=4 of A288318.
Cf. A000108.
Sequence in context: A341383 A214711 A216767 * A003185 A302276 A302726
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 07 2017
STATUS
approved