login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338406
Numbers m such that tau(m), sigma(m) and pod(m) are pairwise relatively prime.
1
1, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 1936, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225, 13456
OFFSET
1,2
COMMENTS
Numbers m such that A336723(m) = A000005(m) * A000203(m) * A007955(m).
Numbers m such that lcm(m, tau(m), sigma(m), pod(m)) = tau(m) * sigma(m) * pod(m).
Subsequence of numbers m such that A336722(m) = gcd(tau(m), sigma(m), pod(m)) = 1.
From David A. Corneth, Dec 11 2020: (Start)
a(n) is a perfect square. Proof: If a(n) is not a perfect square but is even then both tau(a(n)) and pod(a(n)) are divisible by 2. Contradiction.
If a(n) is not a perfect square and is odd then both tau(a(n)) and sigma(a(n)) are even. Contradiction.
Hence if a(n) is not a perfect square then it can be neither even nor odd. So a(n) is a perfect square. Q.E.D. (End)
LINKS
EXAMPLE
lcm(tau(4), sigma(4), pod(4)) = lcm(3, 7, 8) = tau(4) * sigma(4) * pod(4) = 3 * 7 * 8 = 168.
MATHEMATICA
Select[Range[15000], CoprimeQ[(d = DivisorSigma[0, #]), (s = DivisorSigma[1, #])] && CoprimeQ[d, (p = #^(d/2))] && CoprimeQ[s, p] &] (* Amiram Eldar, Oct 25 2020 *)
PROG
(Magma) [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq #Divisors(m) * &+Divisors(m) * &*Divisors(m)]
(PARI) isok(m) = my(d=divisors(m), t=#d, s=vecsum(d), p=vecprod(d)); t*s*p == lcm([t, s, p]); \\ Michel Marcus, Oct 25 2020
CROSSREFS
Cf. A000005 (tau), A000203 (sigma), A007955 (pod).
Sequence in context: A353295 A363428 A295921 * A351979 A111350 A223221
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2020
STATUS
approved