login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295921
Number of (not necessarily maximal) cliques in the n-folded cube graph.
0
4, 16, 25, 57, 129, 289, 641, 1409, 3073, 6657, 14337, 30721, 65537, 139265, 294913, 622593, 1310721, 2752513, 5767169, 12058625, 25165825, 52428801, 109051905, 226492417, 469762049, 973078529, 2013265921, 4160749569, 8589934593, 17716740097, 36507222017
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Clique
Eric Weisstein's World of Mathematics, Folded Cube Graph
FORMULA
a(n) = 2^(n - 2)*(n + 2) + 1 for n > 3.
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3) for n > 3.
G.f.: x^2*(-4 + 4*x + 23*x^2 - 44*x^3 + 20*x^4)/((-1 + x)*(-1 + 2*x)^2).
MATHEMATICA
Table[Piecewise[{{4, n == 2}, {16, n == 3}}, 2^(n - 2) (n + 2) + 1], {n, 2, 20}]
Join[{4, 16}, LinearRecurrence[{5, -8, 4}, {25, 57, 129}, 20]]
CoefficientList[Series[(-4 + 4 x + 23 x^2 - 44 x^3 + 20 x^4)/((-1 + x) (-1 + 2 x)^2), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A075576 A353295 A363428 * A338406 A351979 A111350
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Nov 30 2017
STATUS
approved