login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295920
Number of twice-factorizations of n of type (P,R,R).
5
1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.
FORMULA
a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - Antti Karttunen, Dec 06 2018, after Mathematica-code
EXAMPLE
The a(64) = 17 twice-factorizations are:
(2)*(2)*(2)*(2)*(2)*(2) (2*2)*(2*2)*(2*2) (2*2*2)*(2*2*2) (2*2*2*2*2*2)
(2*2)*(2*2)*(4) (2*2)*(4)*(2*2) (4)*(2*2)*(2*2)
(2*2)*(4)*(4) (4)*(2*2)*(4) (4)*(4)*(2*2)
(2*2*2)*(8) (8)*(2*2*2)
(4)*(4)*(4) (4*4*4)
(8)*(8) (8*8)
(64)
MATHEMATICA
Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All, 2]]]]^d, {d, Divisors[GCD@@FactorInteger[n][[All, 2]]]}], {n, 100}]
PROG
(PARI)
A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
A295920(n) = if(1==n, n, my(r); sumdiv(A052409(n), d, if(!ispower(n, d, &r), (1/0), numdiv(A052409(r))^d))); \\ Antti Karttunen, Dec 06 2018, after Mathematica-code
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 30 2017
EXTENSIONS
More terms from Antti Karttunen, Dec 06 2018
STATUS
approved