%I #20 Dec 06 2018 16:33:00
%S 1,1,1,3,1,1,1,3,3,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,3,1,3,1,1,1,1,3,1,1,
%T 1,3,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,17,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1
%N Number of twice-factorizations of n of type (P,R,R).
%C a(n) is also the number of ways to choose a perfect divisor d|n and then a sequence of log_d(n) perfect divisors of d.
%H Antti Karttunen, <a href="/A295920/b295920.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = Sum_{d|A052409(n)} A000005(A052409(n^(1/d)))^d. - _Antti Karttunen_, Dec 06 2018, after Mathematica-code
%e The a(64) = 17 twice-factorizations are:
%e (2)*(2)*(2)*(2)*(2)*(2) (2*2)*(2*2)*(2*2) (2*2*2)*(2*2*2) (2*2*2*2*2*2)
%e (2*2)*(2*2)*(4) (2*2)*(4)*(2*2) (4)*(2*2)*(2*2)
%e (2*2)*(4)*(4) (4)*(2*2)*(4) (4)*(4)*(2*2)
%e (2*2*2)*(8) (8)*(2*2*2)
%e (4)*(4)*(4) (4*4*4)
%e (8)*(8) (8*8)
%e (64)
%t Table[Sum[Length[Divisors[GCD@@FactorInteger[n^(1/d)][[All,2]]]]^d,{d,Divisors[GCD@@FactorInteger[n][[All,2]]]}],{n,100}]
%o (PARI)
%o A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; \\ From A052409
%o A295920(n) = if(1==n,n,my(r); sumdiv(A052409(n), d, if(!ispower(n,d,&r),(1/0),numdiv(A052409(r))^d))); \\ _Antti Karttunen_, Dec 06 2018, after Mathematica-code
%Y Cf. A000005, A001055, A052409, A052410, A089723, A279789, A281113, A295923, A295924, A295931, A295935.
%K nonn
%O 1,4
%A _Gus Wiseman_, Nov 30 2017
%E More terms from _Antti Karttunen_, Dec 06 2018