OFFSET
1,10
COMMENTS
Collatz conjecture is equal to the claim that each column will eventually settle to constant 1's, somewhere under its topmost row. This works as only the bisection A002450 of Jacobsthal numbers (A001045) contains numbers of the form 4k+1, while the other bisection contains only numbers of the form 4k+3, which do not occur among the range of A372351. See also the comments in A371094.
LINKS
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
---+----------------------------------------------------------------------------
1 | 1, 1, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 1,
2 | 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 5, 5, 5, 3, 5, 3, 3, 3, 5, 5, 3,
3 | 1, 1, 1, 3, 3, 3, 1, 5, 1, 3, 1, 3, 3, 5, 3, 5, 5, 1, 3, 3, 5, 3,
4 | 1, 1, 1, 3, 3, 1, 1, 3, 1, 3, 1, 1, 3, 5, 3, 3, 3, 1, 3, 5, 5, 3,
5 | 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 5, 3, 1, 3, 3, 3, 3,
6 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 5, 3, 1, 1, 5, 5, 3,
7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 3, 1, 1, 3, 5, 3,
8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 3, 3, 3,
9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 3, 5, 1,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 3, 5, 1,
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2155, 1, 1, 1, 1, 5, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 6251, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10347, 1, 5, 1, 1, 1, 1, 5, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 5, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 5, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 5, 1, 1, 1, 1, 7, 1,
PROG
(PARI)
up_to = 105;
A130249(n) = (#binary(3*n+1)-1);
A001045(n) = (2^n - (-1)^n) / 3;
A371094(n) = { my(m=1+3*n, e=valuation(m, 2)); ((m*(2^e)) + (((4^e)-1)/3)); };
A372282sq(n, k) = if(1==n, 2*k-1, A371094(A372282sq(n-1, k)));
A372288sq(n, k) = A265745(A372282sq(n, k));
A372288list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A372288sq((a-(col-1)), col))); (v); };
v372288 = A372288list(up_to);
A372288(n) = v372288[n];
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 28 2024
STATUS
approved