login
A375360
The maximum exponent in the prime factorization of the smallest exponentially odd number that is divisible by n.
2
0, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 3, 1, 1, 1, 3, 1
OFFSET
1,4
COMMENTS
Differs from A365331 at n = 1, 36, 72, 100, ... .
FORMULA
a(n) = A051903(A356191(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum{k>=1} (1 - 1/zeta(2*k)) = 1.98112786070359477197... .
MATHEMATICA
a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[(If[OddQ[#], #, # + 1]) & /@ e]]; a[1] = 0; Array[a, 100]
PROG
(PARI) a(n) = if(n == 1, 0, vecmax(apply(x -> if(x % 2, x, x+1), factor(n)[, 2])));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 13 2024
STATUS
approved