login
A372287
Array read by upward antidiagonals: A(n, k) = A371092(A372283(n, k)), n,k >= 1.
8
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 7
OFFSET
1,10
COMMENTS
A(n, k) gives the column index of A372282(n, k) [or equally, of A372283(n, k)] in array A257852.
Collatz conjecture is equal to the claim that in each column 1 will eventually appear.
FORMULA
A(n, k) = A371092(A372282(n,k)) = A371092(A372283(n,k)).
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
---+---------------------------------------------------------------
1 | 1, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 4, 7, 2, 8, 5, 9, 2, 10,
2 | 1, 1, 1, 3, 2, 3, 1, 6, 1, 2, 1, 9, 5, 6, 3, 12, 4, 1, 2, 15,
3 | 1, 1, 1, 3, 3, 1, 1, 9, 1, 3, 1, 1, 2, 8, 3, 18, 5, 1, 3, 12,
4 | 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 12, 1, 27, 2, 1, 3, 17,
5 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 18, 1, 21, 3, 1, 1, 4,
6 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 16, 3, 1, 1, 5,
7 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 1, 23, 1, 1, 1, 2,
8 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 18, 1, 1, 1, 3,
9 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 1, 26, 1, 1, 1, 3,
10 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 18, 1, 39, 1, 1, 1, 1,
11 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 1, 30, 1, 1, 1, 1,
12 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 44, 1, 1, 1, 1,
13 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 30, 1, 66, 1, 1, 1, 1,
14 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 44, 1, 99, 1, 1, 1, 1,
15 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 66, 1, 75, 1, 1, 1, 1,
16 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 99, 1, 28, 1, 1, 1, 1,
17 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 75, 1, 42, 1, 1, 1, 1,
18 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 63, 1, 1, 1, 1,
19 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 48, 1, 1, 1, 1,
20 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 63, 1, 71, 1, 1, 1, 1,
PROG
(PARI)
up_to = 105;
A000265(n) = (n>>valuation(n, 2));
A371092(n) = floor((A000265(1+(3*n))+5)/6);
R(n) = { n = 1+3*n; n>>valuation(n, 2); };
A372283sq(n, k) = if(1==n, 2*k-1, R(A372283sq(n-1, k)));
A372287sq(n, k) = A371092(A372283sq(n, k));
A372287list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A372287sq((a-(col-1)), col))); (v); };
v372287 = A372287list(up_to);
A372287(n) = v372287[n];
CROSSREFS
Cf. also A371097 (array giving every fourth column, 1, 5, 9, ...), A371103 (array giving every even numbered column), also array A371101.
Sequence in context: A086290 A136568 A342477 * A152157 A039961 A108299
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Apr 28 2024
STATUS
approved