login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342477
The squarefree part of the powerful numbers: a(n) = A007913(A001694(n)).
1
1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 3, 1, 5, 2, 1, 1, 1, 2, 6, 1, 3, 1, 2, 1, 1, 7, 1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 6, 1, 1, 2, 3, 10, 1, 1, 5, 2, 1, 1, 1, 3, 11, 2, 1, 7, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 6, 5, 1, 2, 1, 3, 13, 1, 1, 2
OFFSET
1,3
LINKS
Vlad Copil and Laureniu Panaitopol, A sequence attached to powerful numbers, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, Nouvelle Série, Vol. 50 (98), No. 3 (2007), pp. 249-258; alternative link.
FORMULA
Theorems 1-4 by Copil and Panaitopol (2007):
Sum_{k=1..n} a(k) ~ (3/Pi^2)*zeta(4/3)*n^(3/2) + O(sqrt(n)*log(n)).
Sum_{k=1..n} a(k)^2 ~ n/3 + O(n^(5/6)).
Sum_{k=1..n} 1/a(k) ~ (zeta(5/2)/zeta(5))*sqrt(n) + O(log(n)).
Product_{k=1..n} a(k) ~ exp(c*sqrt(n) + O(n^(1/3)*log(n))), where c = Sum_{k>=1} f(A005117(k)), and f(x) = log(x)/x^(3/2).
MATHEMATICA
f[p_, e_] := p^Mod[e, 2]; sqfp[n_] := Times @@ f @@@ FactorInteger[n]; powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; sqfp /@ Select[Range[1000], powQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 13 2021
STATUS
approved