login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The squarefree part of the powerful numbers: a(n) = A007913(A001694(n)).
1

%I #8 Mar 14 2021 05:14:46

%S 1,1,2,1,1,1,3,2,1,1,1,2,1,1,3,1,5,2,1,1,1,2,6,1,3,1,2,1,1,7,1,2,1,3,

%T 1,1,5,2,1,1,1,2,3,1,1,1,2,1,6,1,1,2,3,10,1,1,5,2,1,1,1,3,11,2,1,7,1,

%U 1,2,1,1,3,1,2,1,1,6,5,1,2,1,3,13,1,1,2

%N The squarefree part of the powerful numbers: a(n) = A007913(A001694(n)).

%H Amiram Eldar, <a href="/A342477/b342477.txt">Table of n, a(n) for n = 1..10000</a>

%H Vlad Copil and Laureniu Panaitopol, <a href="https://www.jstor.org/stable/43679072">A sequence attached to powerful numbers</a>, Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, Nouvelle Série, Vol. 50 (98), No. 3 (2007), pp. 249-258; <a href="https://ad-astra.ro/2012/01/23/a-sequence-attached-to-powerful-numbers/">alternative link</a>.

%F Theorems 1-4 by Copil and Panaitopol (2007):

%F Sum_{k=1..n} a(k) ~ (3/Pi^2)*zeta(4/3)*n^(3/2) + O(sqrt(n)*log(n)).

%F Sum_{k=1..n} a(k)^2 ~ n/3 + O(n^(5/6)).

%F Sum_{k=1..n} 1/a(k) ~ (zeta(5/2)/zeta(5))*sqrt(n) + O(log(n)).

%F Product_{k=1..n} a(k) ~ exp(c*sqrt(n) + O(n^(1/3)*log(n))), where c = Sum_{k>=1} f(A005117(k)), and f(x) = log(x)/x^(3/2).

%t f[p_, e_] := p^Mod[e, 2]; sqfp[n_] := Times @@ f @@@ FactorInteger[n]; powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; sqfp /@ Select[Range[1000], powQ]

%Y Cf. A001694, A005117, A007913.

%K nonn

%O 1,3

%A _Amiram Eldar_, Mar 13 2021