OFFSET
1,1
COMMENTS
Sequence is a permutation of the odd natural numbers.
LINKS
FORMULA
From Ruud H.G. van Tol, Oct 17 2023: (Start)
A(n,k+1) = A(n,k) + 2^(n+1).
A(n+2,k) = A(n,k)*4 + 1.
A(1,k) = A004767(k-1).
A(2,k) = A017077(k-1).
A(3,k) = A082285(k-1).
A(4,k) = A238477(k). (End)
EXAMPLE
From Ruud H.G. van Tol, Oct 17 2023, corrected and extended by Antti Karttunen, Apr 18 2024: (Start)
Array A begins:
n\k| 1| 2| 3| 4| 5| 6| 7| 8| ...
---+---------------------------------------------
1 | 3, 7, 11, 15, 19, 23, 27, 31, ...
2 | 1, 9, 17, 25, 33, 41, 49, 57, ...
3 | 13, 29, 45, 61, 77, 93, 109, 125, ...
4 | 5, 37, 69, 101, 133, 165, 197, 229, ...
5 | 53, 117, 181, 245, 309, 373, 437, 501, ...
6 | 21, 149, 277, 405, 533, 661, 789, 917, ...
... (End)
MATHEMATICA
(* Array: *)
Grid[Table[(2^n*(6*k - 3 - 2*(-1)^n) - 1)/3, {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[(2^(n - k + 1)*(6*k - 3 - 2*(-1)^(n - k + 1)) - 1)/ 3, {n, 10}, {k, n}]]
PROG
(PARI)
up_to = 105;
A257852sq(n, k) = ((2^n * (6*k - 3 - 2*(-1)^n) - 1)/3);
A257852list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A257852sq((a-(col-1)), col))); (v); };
v257852 = A257852list(up_to);
A257852(n) = v257852[n]; \\ Antti Karttunen, Apr 18 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
L. Edson Jeffery, Jul 12 2015
STATUS
approved