

A257852


Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (2^n*(6*k  3  2*(1)^n)  1)/3, n,k >= 1.


0



3, 1, 7, 13, 9, 11, 5, 29, 17, 15, 53, 37, 45, 25, 19, 21, 117, 69, 61, 33, 23, 213, 149, 181, 101, 77, 41, 27, 85, 469, 277, 245, 133, 93, 49, 31, 853, 597, 725, 405, 309, 165, 109, 57, 35, 341, 1877, 1109, 981, 533, 373, 197, 125, 65, 39
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence is a permutation of the odd natural numbers.
Let N_1 denote the set of odd natural numbers, and let y_2 denote 2adic valuation of y. Define the map F : N_1 > N_1 by F(x) = (3*x + 1)/2^3*x+1_2 (cf. A075677). Then row n of A is the set of all x in N_1 for which 3*x + 1_2 = n. Hence F(A(n,k)) = 6*k  3  2*(1)^n.


LINKS

Table of n, a(n) for n=1..55.


MATHEMATICA

(* Array: *)
Grid[Table[(2^n*(6*k  3  2*(1)^n)  1)/3, {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[(2^(n  k + 1)*(6*k  3  2*(1)^(n  k + 1))  1)/ 3, {n, 10}, {k, n}]]


CROSSREFS

Cf. A006370, A075677, A096773.
Sequence in context: A218592 A113647 A161380 * A051927 A322069 A194595
Adjacent sequences: A257849 A257850 A257851 * A257853 A257854 A257855


KEYWORD

nonn,tabl


AUTHOR

L. Edson Jeffery, Jul 12 2015


STATUS

approved



