|
|
A130249
|
|
Maximal index k of a Jacobsthal number such that A001045(k)<=n (the 'lower' Jacobsthal inverse).
|
|
13
|
|
|
0, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Inverse of the Jacobsthal sequence (A001045), nearly, since a(A001045(n))=n except for n=1 (see A130250 for another version). a(n)+1 is equal to the partial sum of the Jacobsthal indicator sequence (see A105348).
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
a(n) = floor(log_2(3n+1)).
a(n) = A130250(n+1) - 1 = A130253(n) - 1.
G.f.: 1/(1-x)*(Sum_{k>=1} x^A001045(k)).
|
|
EXAMPLE
|
a(12)=5, since A001045(5)=11<=12, but A001045(6)=21>12.
|
|
MATHEMATICA
|
Table[Floor[Log[2, 3*n + 1]], {n, 0, 50}] (* G. C. Greubel, Jan 08 2018 *)
|
|
PROG
|
(PARI) for(n=0, 30, print1(floor(log(3*n+1)/log(2)), ", ")) \\ G. C. Greubel, Jan 08 2018
(MAGMA) [Floor(Log(3*n+1)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018
|
|
CROSSREFS
|
For partial sums see A130251. Other related sequences A130250, A130253, A105348. A001045, A130233, A130241.
Sequence in context: A143489 A274102 A261100 * A286105 A061071 A122258
Adjacent sequences: A130246 A130247 A130248 * A130250 A130251 A130252
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Hieronymus Fischer, May 20 2007
|
|
STATUS
|
approved
|
|
|
|